[Vted.vn] - Công thức giải nhanh Hình phẳng toạ độ Oxy

6347 25 Đã đăng 2018-08-08 16:02:36 Kiến thức toán học


Bài viết này Vted trình bày đến bạn đọc một số công thức nhanh hay được sử dụng và có tính hiệu quả trong quá trình học và làm bài Hình phẳng toạ độ Oxy

Công thức 1: Công thức tính nhanh diện tích tam giác trong mặt phẳng toạ độ Oxy

Trong quá trình làm các bài toán về diện tích trong mặt phẳng toạ độ Oxy với một tam giác có sẵn toạ độ của ba đỉnh, ta thường sử dụng công thức tính nhanh sau:

Xét tam giác $ABC$ có $\overrightarrow{AB}({{x}_{1}};{{y}_{1}}),\overrightarrow{AC}({{x}_{2}};{{y}_{2}})$ thì ${{S}_{ABC}}=\frac{1}{2}\left| {{x}_{1}}{{y}_{2}}-{{x}_{2}}{{y}_{1}} \right|.$

Chứng minh. Ta có

\(\begin{array}{c} {S_{ABC}} = \frac{1}{2}AB.AC.\sin \widehat {BAC} = \frac{1}{2}AB.AC.\sqrt {1 - {{\cos }^2}\widehat {BAC}} \\ = \frac{1}{2}AB.AC.\sqrt {1 - {{\cos }^2}\left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right)} \\ = \frac{1}{2}AB.AC.\sqrt {1 - \frac{{{{\left( {\overrightarrow {AB} .\overrightarrow {AC} } \right)}^2}}}{{A{B^2}.A{C^2}}}} = \frac{1}{2}\sqrt {A{B^2}.A{C^2} - {{\left( {\overrightarrow {AB} .\overrightarrow {AC} } \right)}^2}} \\ = \frac{1}{2}\sqrt {(x_1^2 + y_1^2)(x_2^2 + y_2^2) - {{({x_1}{x_2} + {y_1}{y_2})}^2}} \\ = \frac{1}{2}\sqrt {{{({x_1}{y_2} - {x_2}{y_1})}^2}} = \frac{1}{2}\left| {{x_1}{y_2} - {x_2}{y_1}} \right|. \end{array}\)

Công thức 2: Công thức phương trình đường phân giác của góc tạo bởi hai đường thẳng cắt nhau

Hai đường thẳng ${{d}_{1}}:{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}$ và ${{d}_{2}}:{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0$ cắt nhau sẽ có hai đường thẳng là phân giác của góc tạo bởi hai đường thẳng này

Phương trình đường phân giác có phương trình xác định bởi: $\dfrac{{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}}{\sqrt{a_{1}^{2}+b_{1}^{2}}}=\pm \dfrac{{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}}{\sqrt{a_{2}^{2}+b_{2}^{2}}}.$

Công thức 3: Công thức phương trình đường phân giác của góc nhọn tạo bởi hai đường thẳng cắt nhau

Xét hai đường thẳng cắt nhau ${{d}_{1}},{{d}_{2}}$ có véctơ chỉ phương $\overrightarrow{{{u}_{1}}},\overrightarrow{{{u}_{2}}}.$ Khi đó nếu

$\overrightarrow{{{u}_{1}}}.\overrightarrow{{{u}_{2}}}>0$ thì \[\overrightarrow{u}=\frac{1}{\left| \overrightarrow{{{u}_{1}}} \right|}\overrightarrow{{{u}_{1}}}+\frac{1}{\left| \overrightarrow{{{u}_{2}}} \right|}\overrightarrow{{{u}_{2}}}\] là véctơ chỉ phương của đường thẳng phân giác của góc nhọn tạo bởi hai đường thẳng trên.

$\overrightarrow{{{u}_{1}}}.\overrightarrow{{{u}_{2}}}<0$ thì \[\overrightarrow{u}=\frac{1}{\left| \overrightarrow{{{u}_{1}}} \right|}\overrightarrow{{{u}_{1}}}-\frac{1}{\left| \overrightarrow{{{u}_{2}}} \right|}\overrightarrow{{{u}_{2}}}\] là véctơ chỉ phương của đường thẳng phân giác của góc nhọn tạo bởi hai đường thẳng trên.

Công thức 4: Công thức phương trình đường phân giác của góc tù tạo bởi hai đường thẳng cắt nhau

Xét hai đường thẳng cắt nhau ${{d}_{1}},{{d}_{2}}$ có véctơ chỉ phương $\overrightarrow{{{u}_{1}}},\overrightarrow{{{u}_{2}}}.$ Khi đó nếu

$\overrightarrow{{{u}_{1}}}.\overrightarrow{{{u}_{2}}}>0$ thì \[\overrightarrow{u}=\frac{1}{\left| \overrightarrow{{{u}_{1}}} \right|}\overrightarrow{{{u}_{1}}}-\frac{1}{\left| \overrightarrow{{{u}_{2}}} \right|}\overrightarrow{{{u}_{2}}}\] là véctơ chỉ phương của đường thẳng phân giác của góc tù tạo bởi hai đường thẳng trên.

$\overrightarrow{{{u}_{1}}}.\overrightarrow{{{u}_{2}}}<0$ thì \[\overrightarrow{u}=\frac{1}{\left| \overrightarrow{{{u}_{1}}} \right|}\overrightarrow{{{u}_{1}}}+\frac{1}{\left| \overrightarrow{{{u}_{2}}} \right|}\overrightarrow{{{u}_{2}}}\] là véctơ chỉ phương của đường thẳng phân giác của góc tù tạo bởi hai đường thẳng trên.

Công thức 5: Tính nhanh toạ độ tâm đường tròn nội tiếp tam giác khi biết toạ độ ba đỉnh

Xét tam giác $ABC$ với $BC=a,CA=b,AB=c$ và gọi $I$ là tâm đường tròn nội tiếp tam giác $ABC$ khi đó xuất phát từ đẳng thức véctơ $a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=\overrightarrow{0}$ ta có \(\left\{ \begin{array}{l} {x_I} = \frac{{a{x_A} + b{x_B} + c{x_C}}}{{a + b + c}}\\ {y_I} = \frac{{a{y_A} + b{y_B} + c{y_C}}}{{a + b + c}}\\ {z_I} = \frac{{a{z_A} + b{z_B} + c{z_C}}}{{a + b + c}} \end{array} \right.\)

Gồm 4 khoá luyện thi duy nhất và đầy đủ nhất phù hợp với nhu cầu và năng lực của từng đối tượng thi sinh:

  1. PRO X 2019: Luyện thi THPT Quốc Gia 2018 - Học toàn bộ chương trình Toán 12, luyện nâng cao 11 và 12, Ngoài ra khoá học này bao gồm cả luyện đề tức khoá PRO XPLUS. Khoá này phù hợp với tất cả các em học sinh vừa bắt đầu lên lớp 12 hoặc lớp 11 học sớm chương trình 12, đều có thể theo học khoá này.
  2. PRO XMAX 2019: Luyện nâng cao 9 đến 10 chỉ dành cho học sinh giỏi Học qua bài giảng và làm đề thi nhóm câu hỏi Vận dụng cao trong đề thi THPT Quốc Gia thuộc tất cả chủ đề đã có trong khoá PRO X
  3. PRO XPLUS 2019: Luyện đề thi tham khảo THPT Quốc Gia 2019 Môn Toán gồm 20 đề 2019 và được tặng kèm 20 đề khoá Luyện đề PRO XPLUS 2018. Khoá này các em học đạt hiệu quả tốt nhất khoảng thời gian sau tết âm lịch và cơ bản hoàn thành chương trình khoá PRO X. 
  4. PRO XMIN 2019: Luyện đề thi tham khảo THPT Quốc Gia 2019 Môn Toán từ các trường THPT Chuyên và Sở giáo dục đào tạo, gồm các đề chọn lọc sát với cấu trúc của bộ công bố. Khoá này bổ trợ cho khoá PRO XPLUS, với nhu cầu cần luyện thêm đề hay và sát cấu trúc.  

Quý thầy cô giáo, quý phụ huynh và các em học sinh có thể mua Combo gồm cả 4 khoá học cùng lúc hoặc nhấn vào từng khoá học để mua lẻ từng khoá phù hợp với năng lực và nhu cầu bản thân. 

>>Xem thêm Tổng hợp các công thức tính nhanh số phức rất hay dùng- Trích bài giảng khoá học PRO X tại Vted.vn

>>Xem thêm [Vted.vn] - Công thức giải nhanh Hình phẳng toạ độ Oxy

>>Xem thêm [Vted.vn] - Công thức giải nhanh hình toạ độ Oxyz


Bình luận

Để bình luận, bạn cần đăng nhập bằng tài khoản Vted.

Đăng nhập
Lê Hồng Ngọc đã bình luận 10:30 11-06-2019

em cần file pdf ạ lehongngoc1290@gmail.com

em cảm ơn

0
Bé Mầm đã bình luận 22:41 28-05-2019

cho e xin file pdf ạ
huongentrol@gmail.com

0
Minh Hiển đã bình luận 15:15 02-05-2019

cho e xin file pdf ạ 
conanbiology10@gmail.com

0
Bình đã bình luận 10:48 30-04-2019

Cho em xin bản pdf với ạ

binh2001lclc@gmail.com

0
cucbotdiilang đã bình luận 13:18 07-04-2019

cho e xin pdf với ạ cucbotdiilang@gmail.com

0